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1. Introduction

Consideration of fundamental theories such as M/String Theory in the cosmological context

continues to attract attention in the literature. One of the interesting questions is the role

of tachyon in String Theory and Cosmology. The great progress in our understanding of

tachyon condensation was made in the past decade [1 – 3], but a lot of interesting issues

are still open. Among the most important ones is a better understanding of the dynamics

of tachyon condensation process.

In this context many works have been devoted to the study of time-dependent solutions.

Probably one of the most fascinating frameworks for this is Open String Field Theory

(OSFT) [4] which reattracted a lot of attention after a recent work [5]. Despite the recent

renewal of interest to OSFT no smooth solutions interpolating between two inequivalent

vacua even at the lowest level truncation order [6, 7] were found. One of exceptional

features of the level truncation approach is that corresponding action contains infinitely

many time derivatives, i.e. it is non-local. Resulting models have a rich set of properties

that might be essential for the development of stringy cosmology. Substantial investigation
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of this type of models was performed [8, 9, 18 – 33, 35 – 37, 43, 42] after seminal paper [8]

where many useful properties were revealed, among which the presence of rolling solution

with widely increasing oscillations. Further research of time-dependent rolling solutions

was also performed in particular in [10]. Recently several time dependent rolling tachyon

solutions in OSFT were found [12, 13], which confirmed puzzling behavior of the solutions

found earlier [8, 10, 11]. In these works investigations were performed in usual space-

time coordinates. At the same time is it known that in the light-cone gauge the theory

becomes local in light-cone time [14]. In fact the question of the identity of light-like

and time-like cases is under investigation. In the light-like case (with dilatonic damping),

the gradient flow forces tachyon to asymptote to the true vacuum at late times [15]. In

the time-like case, rolling configuration between two non-equivalent vacua is forbidden by

energy conservation law in Minkowski space time if one considers only tachyon excitation

in the level truncation approximation [8, 16]. Investigations in the last case though did not

take into account any effects of gravity, this makes such investigations inconsistent from

cosmological point of view.

It turns out that if we consider the same action coupled to the gravity in Friedmann-

Robertson-Walker (FRW) metric the situation changes: there appears a tachyon solution

which tends to the true vacuum at late times [16]. It is interesting to note that because

dilaton appears from the same string sector as graviton, inclusion of dilaton into the tachyon

action can qualitatively reproduce behavior of the tachyon in curved space. Thus obtained

solution is in accordance with results obtained in light-like and time-like cases at least at

the lowest level approximation.

In the present work we consider scalar field dynamics with infinitely many time

derivatives minimally coupled to the Minskowski and Friedmann-Robertson-Walker gravi-

tational backgrounds.

The structure of the work is the following. In the first section we will give a brief intro-

duction and physical motivation. In the second section the model which appears from Open

String Field Theory will be presented and problem of existence of solutions interpolating

between two inequivalent vacua will be discussed. In the third section we will consider the

model minimally coupled to gravity and demonstrate an intriguing difference compared to

the case without gravity: the existence of desired solution. Numerical techniques will be

described in section 4. Results of numerical calculations will be presented in section 5.

Finally we will summarize main results.

2. The model

The action of bosonic cubic string field theory has the form

S = − 1

g2
0

∫ (

1

2
Φ ·QBΦ +

1

3
Φ · (Φ ∗ Φ)

)

, (2.1)

where g0 is the open string coupling constant, QB is BRST operator, ∗ is noncommutative

product and Φ is the open string field containing component fields which correspond to all

the states in string Fock space.
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Considering only tachyon field φ(x) at the level (0,0) the action (2.2) becomes

S =
1

g2
0

∫

d26x

[

α′

2
φ(x)�φ(x) +

1

2
φ2(x)− 1

3
K3Φ3(x)− Λ

]

, (2.2)

where α′ is the Regge slope, K = 3
√

3
4 , φ is a scalar field, Φ = ek�φ, k = α′ lnK, � =

1√−g
∂µ
√−ggµν∂ν and Λ = 1

6K
−6 was added to the potential to set the local minimum of

the potential to zero according Sen’s conjecture [38]. In what follows we will work in units

where g0 = 1.

The action (2.2) leads to equation of motion

(α′
� + 1)e−2k�Φ = K3Φ2. (2.3)

The Stress Tensor for our system is1

Tαβ(x) = −gαβ

(

1

2
φ2 − α′

2
∂µφ∂

µφ− 1

3
K3Φ3 − Λ

)

− α′∂αφ∂βφ

−gαβ k

∫ 1

0
dρ
[

(ekρ�K3Φ2)(�e−kρ�Φ) + (∂µe
kρ�K3Φ2)(∂µe−kρ�Φ)

]

(2.4)

+2k

∫ 1

0
dρ (∂αe

kρ�K3Φ2)(∂βe
−kρ�Φ).

On spatially homogeneous configurations the energy is defined as E(t) = T 00 and pressure

as P(t)i = −T i
i (no summation) and for our system

E = Ek + Ep + Λ + Enl1 + Enl2, P = Ek − Ep − Λ− Enl1 + Enl2 (2.5)

where

Ek =
α′

2
(∂φ)2, Ep = −1

2
φ2 +

K3

3
Φ3

Enl1 = k

∫ 1

0
dρ
(

ekρ�K3Φ2
)(

−�e−kρ�Φ
)

,

Enl2 = −k
∫ 1

0
dρ
(

∂ekρ�K3Φ2
)(

∂e−kρ�Φ
)

. (2.6)

where � = −∂2 and ∂ denotes time derivative.

The symbol eρ∂2
ϕ defined as2

eρ∂2
Φ(t) = Cρ[Φ](t) (2.7)

1Note that here and below integration over ρ is understood as limit of the following regularization

Z 1

0

dρf(ρ) = lim
ǫ1→+0

lim
ǫ2→+0

Z 1−ǫ2

ǫ1

dρf(ρ).

2It is easier to use integral representation for the operator eρ∂2

while considering Minkowski background,

in the FRW case though it becomes impossible to generalize such an approach and we define the operator

eρ∂2

in terms of solution of the boundary value problem for diffusion equation, see [31] for the details.
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where

Cρ[Φ](t) =
1√
4πρ

∫ +∞

−∞
e
− (t−t′)2

4ρ Φ(t′)dt′.

Nonlocal terms Enl1 and Enl2 contain e−kρ∂2
which as it can be easily seen might lead to

the growing kernel in the integral representation of the non-local operator, that is why we

will try to avoid calculation of e−kρ∂2
and will use the following representation for nonlocal

energy terms Enl1 and Enl2 which are valid on the equation of motion for the scalar field

Enl1 = k

∫ 1

0
dρ
(

(−α′∂2 + 1)e(2−ρ)k∂2
Φ
)(

∂2ekρ∂2
Φ
)

,

Enl2 = −k
∫ 1

0
dρ
(

∂(−α′∂2 + 1)e(2−ρ)k∂2
Φ
)(

∂ekρ∂2
Φ
)

. (2.8)

2.1 Energy conservation

Energy conservation laws always have the deep physical sense. Note that because of pres-

ence of infinitely many time derivatives we need to prove energy conservation explicitly.

Similar investigation was performed in [8], although in that work representation of pseudo-

differential operator via the summation over infinite series expansion was used with which

one always needs to be very careful with regard to convergence issues. The approach used

here is advantageous from the point of view of numerical calculations, because in order to

define action of the exponential operator we need to do only one well defined integration.

Taking into account that models with different types of potentials are currently under

the consideration in the literature [29, 31, 43] we will show the energy conservation for

arbitrary potential.

Claim 1. 3 The Energy

E =
α′

2
(∂φ)2 − 1

2
φ2 + V (Φ) + Λ + k

∫ 1

0
dρ ((−α′∂2 + 1)e(2−ρ)k∂2

Φ)
←→
∂ (∂ekρ∂2

Φ),

is conserved on the solutions of equation of motion

(−α′∂2 + 1)e2k∂2
Φ =

∂V (Φ)

∂Φ

of the corresponding action

S =
1

g2
0

∫

d26x

[

α′

2
φ(x)�φ(x) +

1

2
φ2(x)− V (Φ)− Λ

]

,

where V (Φ) is any polynomial potential and A
←→
∂ B = A∂B −B∂A.

3For simplicity we will use symbolic notation for nonlocal operator e∂2

keeping in mind that it is in fact

defined by (2.7), also integration over ρ must be understood as limit of the corresponding regularization as

indicated earlier.
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Proof. We compute

dE(t)
dt

= α′∂φ∂2φ− φ∂φ+
∂V (Φ)

∂Φ
∂Φ + k

∫ 1

0
dρ((−α′∂2 + 1)e(2−ρ)k∂2

Φ)
←→
∂2 (∂ekρ∂2

Φ)

Using following identity (for details on its derivation see appendix)

1
∫

0

dρ(eρ∂2
ϕ)
←→
∂2 (e(1−ρ)∂2

φ) = ϕ
←→
e∂

2
φ,

equation of motion and definition of field Φ, we have

dE(t)
dt

= α′∂φ∂2φ− φ∂φ+
∂V

∂Φ
∂Φ + ∂Φ

←→
ek∂2

(α′∂2 − 1)ek∂2
Φ (2.9)

= ∂Φ

[

(−α′∂2 + 1)e2k∂2
Φ +

∂V

∂Φ

]

= 0.

In the next paragraph we consider one important physical consequence of this energy

conservation law.

2.2 Existence of the rolling solution

We already indicated that from physical perspective we are interested in solutions interpo-

lating between two inequivalent vacua. We start our consideration by looking for stationary

configurations Φ0. Substituting it into equation of motion (2.3) we get Φ0 = K3Φ2
0, which

has two constant solutions: Φ0 = 0 and Φ0 = K−3. We should thus be looking for so-

lutions interpolating between those stationary points. The following claim though shows

that energy conservation forbids existence of such solutions.

Claim 2. 4 There do not exist continuous solutions of equation (2.3) which satisfy bound-

ary conditions

lim Φ(t) =

{

0, t→∞,
K−3, t→ −∞

(2.10)

or vice-versa (in terms t→ −t).

Proof. Let us assume existence of such solution and calculate energy at the extremum

points, we get E(Φ = 0) = Λ and E(Φ = K−3) = −1
6K

−6 + Λ, i.e. energy values at

t → +∞ and t → −∞ are different what due to conservation law rules out existence of

solutions satisfying (2.10).

3. The model coupled to the gravity

In this section we would like to consider tachyon dynamics in Friedmann-Robertson-Walker

background what allows us to take into account gravity effects and makes the research more

4Similar claim for p-adic string model was proved in [8], which rules out the possibility that tachyon

may roll monotonically down from one extremum reaching the tachyon vacuum.

– 5 –



J
H
E
P
0
2
(
2
0
0
9
)
0
4
5

consistent from cosmological point of view. Consider the model

S =
1

g2
0

∫

d4x
√−g

(

m2
p

2
R+

1

2
φ�φ+

1

2
φ2 − 1

3
K3Φ3 − Λ

)

, (3.1)

here m2
p = g2

0M
2
pl and we will work in units where α′ = 1. As a particular metric we will

consider the FRW

ds2 = −dt2 + a2(t)(dx2
1 + dx2

2 + dx2
3),

for which the Beltrami-Laplace operator for spatially-homogeneous configurations takes

the form � = −∂2 − 3H(t)∂ = −D2
H. Scalar field and Friedmann equations are

(−D2
H + 1)e2kD2

HΦ = K3Φ2, (3.2)

3H2 =
1

m2
p

E , 3H2 + 2Ḣ = − 1

m2
p

P. (3.3)

Inclusion of the gravity considerably modifies the dynamics of the system. In Minkowski

background we have shown that energy conservation law forbids dynamical interpolation

between two inequivalent vacua. In FRW background energy of the scalar field alone does

not conserve any more due to the Hubble term and as a result the restrictions on existence

of such solutions no longer apply.

To find boundary conditions for possible solutions let us consider constant scalar field

solution, Φ0. In this case the scalar field equation (3.2) becomes

Φ0 = K3Φ2
0, (3.4)

and first equation in (3.3)

3H2
0 =

1

m2
p

E(Φ0). (3.5)

Equation (3.4) has two solutions: Φ01 = 0 and Φ02 = K−3, substituting them into (3.5) we

obtain corresponding values for a Hubble parameter H01 = (18K6)−1/2 and H02 = 0. Note

that from cosmological perspective we are interested only in positive values for the Hubble

function, so we can expect rolling solutions with the following boundary conditions

lim Φ(t) =

{

0, t→∞,
K−3, t→ −∞,

limH(t) =

{

(18K6)−1/2, t→∞,
0, t→ −∞,

(3.6)

or vice-versa (in terms of t→ −t).
To analyze physical situation let us consider potential in which motion is expected.

Naive extraction of potential from the model action (3.1) results in V (Φ) = −1
2Φ2 +

1
3K

3Φ3 + Λ. The constant Λ represents the D-brane tension which according to Sen’s

conjecture must be added to cancel negative energy appearing due to the presence of

tachyon. We obtained two types of solutions. The first one is an ordinary rolling solution

which starts from Φ = 0 and goes towards configuration Φ = K−3 which is associated

with the true vacuum. This solution can be interpreted as a description of the D-brane

decay. The second one is a rolling solution which goes in the opposite direction, which

– 6 –
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Figure 1: The potential.

appears in this model possibly because of the non-locality in the interaction. It is known

that nonlocal dynamics has many interesting properties which are not possible in the local

case. In particular the “slop effect” [8, 21, 27] which we can observe in the obtained

solutions (figure 2, 3) when the scalar field goes beyond the values from which the scalar

field configuration starts — situation which is not possible in the local models. Potentially

a similar effect can initiate non-symmetry in the potential in ekpyrotic [39] and cyclic

cosmology [40].

4. Numerical solution construction

In order to construct numerical solution we operate with scalar field equation of mo-

tion (3.2) and the difference of equations (3.3), specifically we solve

(−D2
H + 1)e2kD2

HΦ = K3Φ2, (4.1a)

Ḣ = − 1

2m2
p

(P + E). (4.1b)

We discretize equations (4.1a)–(4.1b) by introducing a lattice in t variable and then solving

resulting system of nonlinear equations using iterative relaxation solver controlling error

tolerance with discrete L2 and L∞ norms.

4.1 Discretization

When solving discretized equations (4.1a)–(4.1b) the nontrivial part from computational

point of view is efficient evaluation of e2kρD2
HΦ for ρ ∈ [0, 2]. This operator could be inter-

preted in terms of initial value problem for the following diffusion equation with boundary

conditions [31]

∂ρϕ(t, ρ) = 2k
(

∂2
t ϕ(t, ρ) + 3H(t)∂tϕ(t, ρ)

)

, (4.2)

ϕ(0, t) = Φ(t),

ϕ(ρ,±∞) = Φ(±∞). (4.3)

Once solution of this equation is constructed we have e2kρD2
HΦ(t) = ϕ(ρ, t).

– 7 –
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Figure 2: Solutions of the scalar field (3.2) and Friedmann equation (3.3) Φ and H (left to right)

for m2

p
= 1.

To solve (4.2) we used second order Crank-Nicholson scheme which is based on the

following stepping procedure

ϕ(t, ρ+ ∆ρ) =
(

1 + k∆ρD̃2
H

)(

1− k∆ρD̃2
H

)−1
ϕ+ o(∆2

ρ‖D̃2
H‖),

where D̃2
H denotes discretization of D2

H (it thus has a finite norm) and ∆ρ is a step size

along ρ variable. We used the following tri-diagonal discretization scheme for D2
H

D̃2
H =

1

∆2
t

















−2 2 0 . . . 0

1 −2 1 . . . 0
...

. . .
. . .

. . .
...

0 . . . 1 −2 1

0 . . . 0 −2 2

















+
3

2∆t
diag(H−N , . . . ,HN )

















0 0 0 . . . 0

−1 0 1 . . . 0
...

. . .
. . .

. . .
...

0 . . . −1 0 1

0 . . . 0 0 0

















,

where ∆t is the step size along t and discretization of Hubble function isHk = H(k∆t). This

is a usual symmetric discretization scheme on the uniform lattice modified on the interface

to guarantee boundary condition (4.1b) for smooth solutions which tend to constants as

t→ ±∞.

4.2 Comparison of different methods

In order to exclude possible artifacts of the specific numerical scheme described above

we tried Chebyshev-pseudospectral method which is known to generally have exponential

convergence [41]. Such scheme is known to have very different properties [41] compared

to finite difference scheme described above, but it produced the same results up to the

approximation error which provides confidence in the existence of the rolling solutions

reported in this work.

5. Rolling tachyon solution

Solutions of (3.2) and (3.3) are presented on figure 2, 3. It is interesting to note that on these

figures shapes of scalar field look very similar up to reflection over vertical axis while shapes

of Hubble function are different. In order to ensure that this is not an artefact or error

in numerical calculations we performed the following test. First, we performed reflection,

– 8 –
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Figure 3: Solutions of the scalar field (3.2) and Friedmann equation (3.3) Φ and H (left to right)

for m2

p
= 1.

t → −t, of the scalar field from figure 2 and compared it with scalar field from figure 3,

while difference was small it was well above the error tolerance. We also numerically

computed discrepancies between left and right sides of equations of motion where Hubble

function was taken from one solution while scalar field was taken from another solution

and mirrored. While the discrepancy for scalar field was small, the discrepancy for Hubble

function was very large, larger than the Hubble function itself. This test makes us confident

that qualitatively different shapes of Hubble function presented on figure 2, 3 are correct.

Another interesting property of the solution on figure 3 is that while scalar filed gen-

erally rolls down at first it climbs up. We already noted this “slop effect” in the end

of section 3. In fact similar behavior is typical for solutions of nonlocal equations. In

Minkowski metric such behavior was noted by many authors who used different numerical

techniques [21, 27, 42]. It is interesting that in FRW metric this property is preserved.

5.1 Solutions for different mp

Motivated by the fact that string scale does not exactly coincide with Planck mass and

as a consequence there is some freedom in settling m2
p we investigated how the shape of

solutions behaves for different m2
p. Solutions of (3.2), (3.3) for different values of m2

p are

presented on figure 4 and 5.

We can see that the profiles for different m2
p for the first case are very similar. It is

interesting to note how on figure 5 with the growth of m2
p oscillation in the profile of Hubble

function disappears.

5.2 Particular case of p-adic action

The p-adic string model represents a popular toy-model that was proposed in [34]. The

model contains one scalar field and nonlocal interaction. Formulated in arbitrary space-

time dimensionality the model has a parameter p, which is initially taken to be a prime

number. It was shown later that the model describes quite well some physical processes

in string theory, despite its intrinsic limitations. Recently this model started to attract

attention as a cosmological toy model for describing inflation [35, 36, 43]. The p-adic string

model was later considered as being minimally coupled to gravity in Friedmann-Robertson-

Walker metric. In this subsection we would like to show some intriguing properties within

this context.

– 9 –
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Figure 4: Solutions of the scalar field (3.2) and Friedmann equation (3.3) Φ, H for m2

p
= 0.1, 1, 10

(left to right).
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Figure 5: Solutions of the scalar field (3.2) and Friedmann equation (3.3) Φ, H for m2

p
= 0.1, 1, 10

(left to right).

The p-adic action is given by

Sp =

∫

ddxLp =
1

g2
p

∫

ddx

[

−1

2
φp−

1
2
2φ+

1

p+ 1
φp+1

]

,
1

g2
p

=
1

g2

p2

p− 1
. (5.1)

The infinite number of space-time derivatives are manifest in the pseudo-differential oper-

ator p−
1
2
2, where 2 = −∂2 +∇2, p−

1
2
2 = e−

1
2

ln p2.

Considering action (5.1) for p = 2 after the field redefinition ϕ = e−
1
4

ln p2φ we have

S2 =

∫

ddxL2 =
1

g2
p

∫

ddx

[

−1

2
ϕ2 +

1

3
(e

ln 2
4

2ϕ)3
]

, (5.2)

which looks rather similar to the tachyon OSFT action in the level truncation approxima-

tion without kinetic term and with only other difference in common signs.
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Figure 6: Solutions of the Friedmann equations Φ, H : negative sign in front of the Lagrangian

(left), positive sign in front of the Lagrangian (right).
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Figure 7: Energy (left) and pressure (right) for solutions from figure 2.

Indeed, if we denote the approximate lagrangian for the OSFT case

LOSFTapprox =
1

2
φ2 − 1

3
K3(ek2φ)3

we see that for the case of p-adic string model with p = 2 if we neglect the difference in

the factors in exponential operator we have

Lp=2 = −LOSFTapprox.

This observation does not affect dynamic in the case of Minkowski space-time because

sign in front of the Lagrangian does not enter scalar field equation. The situation changes

significantly in Friedmann-Robertson-Walker background because the sign affects equation

for Hubble function. Thus if in the case of OSFT action in approximation neglecting kinetic

term we had monotonically increasing Hubble function in the case of p-adic model for p = 2

we obtain monotonically decreasing Hubble function for the same scalar field configuration.

Corresponding solutions are presented on figure 6.

One of the issues is that the p-adic sting model in the FRW case is not commonly

established and choosing the right sign is nontrivial, especially due to the absence of usual

canonical kinetic term.

5.3 Energy and Pressure for Rolling Tachyon Solutions

Usually when considering dynamics in nontrivial background such as FRW it is instructive

to consider simpler case of Minkowski metric. The intriguing fact though is that there is

no such a possibility since energy conservation law forbids in Minkowksi case solutions like

– 11 –
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Figure 8: Energy (left) and pressure (right) for solutions from figure 3.

those presented in figure 2, 3. Nevertheless it is possible to qualitatively characterize new

features of the system.

Dynamics of the energy and pressure (2.5) for the scalar field from figure 2 is presented

on figure 7. We can see that dynamics is different from what one might expect in Minkowski

case. We obtained solution for which both energy and pressure nontrivially tend to zero at

large times. For the solution from figure 3 the energy and pressure dynamics is different,

see figure 8. The pressure starts from zero and goes to a negative constant, while the

energy starts from zero and goes to a constant of the same value with positive sign.

In both cases we obtained nontrivial partially negative pressure and like in [3] non-

trivial equation of state what might be especially interesting in the light of cosmo-

logical applications.

5.4 Cosmological applications

To discuss cosmological consequences it is interesting to refer to the concluding remarks

and open questions of the work [8] which in fact initiated a whole series of investigation

of nonlocal dynamics in the models with infinitely many time derivatives. The paper [8]

considered string field theory and p-adic theory in Minkowski space time. It was noted that

the most puzzling result from physical point of view is that none of the solutions obtained

there appeared to represent tachyon matter. In other words solutions with varying values

of energy for which pressure tends to zero at late times were not found. It is notable

that solutions obtained in this work have such behavior. As we can see on figure 7 the

pressure goes to zero for long times at the end of the evolution. In fact this represents first

alternative of possible cosmological applications of the obtained solutions.

The second alternative is to consider obtained solutions in the context of description

of very early Universe. This investigation is motivated by the shape of the solutions with

decreasing positive Hubble function presented at the figure 2. The research in this direction

was started in [35] based on p-adic string model and followed by [43] in which CSSFT string

model was considered as well.

The third alternative is to consider configuration from figure 3 in the context of late

time acceleration.

6. Summary

In this paper we have studied dynamics with infinitely many time derivatives in Friedmann-

Robertson-Walker background. The main results are:

– 12 –
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• It was shown that field configurations which interpolate between vacua with different

scalar field energies are possible in the FRW background and corresponding rolling

solutions were obtained.

• We found nontrivial dynamics in the FRW background which differs from dynamics

in Minkowski case. Particularly, we found interpolating solution which goes from

maximum to the true minimum for which the pressure approaches zero at long times

while energy varies starting from the constant which is equal to the brane tension

and tends to zero at the end of the evolution.

Among main results we have also considered in details the properties of constructed

solutions and have shown that the evolution is possible in both directions, and what is even

more puzzling profiles for Hubble functions are different in those cases. In one direction

Hubble function is an increasing almost monotonic function, while in another we observe

significant oscillations during evolution. Moreover it was shown that by varying string

scale we can change the shape of Hubble function and for some string/Planck scale ratio

the oscillations disappear. We also considered dynamics in p-adic string model for partic-

ular value of a parameter p = 2 and have shown that dynamics in the FRW background

drastically differs from the corresponding one in usual string theory.

It is interesting to note that for numerical construction of solutions presented here

we had to abandon explicit iterative techniques which were very successful in previous

investigations of rolling tachyon solutions, see [31, 43] and references therein. Instead we

used slower but more generic relaxation methods with Crank-Nicholson scheme to compute

nonlocal operators.
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A. Useful identity

In this appendix we will prove the following identity

1
∫

0

dρ(eρ∂2
ϕ)
←→
∂2 (e(1−ρ)∂2

φ) = ϕ
←→
e∂

2
φ, (A.1)

where symbol eρ∂2
ϕ is defined in (2.7).
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It is well known, that for functions Φ(t) which are continuous and bounded on the real

axis the following identity have a place

lim
ρ→+0

Cρ[Φ](t) = Φ(t) (A.2)

We can formulate the following lemma

Lemma 1. For continuous and bounded functions ψ(t) and ϕ(t) the following identity

takes a place
1
∫

0

dρCρ[ϕ](t)
←→
∂2C1−ρ[ψ](t) = ϕ

←→
C1ψ, ∂2 ≡ d2

dt2
(A.3)

where left side is understood as

lim
ǫ1→+0

lim
ǫ2→+0

∫ 1−ǫ2

ǫ1

dρdρCρ[ϕ](t)
←→
∂2C1−ρ[ψ](t)

and right hand side as

ϕ
←→
C1ψ = ϕ(t)C1[ψ](t) − C1[ϕ](t)ψ(t)

Proof. We have

1−ε2
∫

ε1

dρCρ[ϕ]
←→
∂2C1−ρ[ψ] =

1−ε2
∫

ε1

dρCρ[ϕ](∂2C1−ρ[ψ]) −
1−ε2
∫

ε1

dρ(∂2Cρ[ϕ])2C1−ρ[ψ].

We will use the fact that for ρ > 0 the function Cρ[ϕ](t) is a solution of the diffusion

equation, i.e

∂2

∂t2
Cρ[ϕ](t) =

∂

∂ρ
Cρ[ϕ](t), ρ > 0 (A.4)

∂2

∂t2
C1−ρ[ϕ](t) = − ∂

∂ρ
C1−ρ[ϕ](t), ρ > 0 (A.5)

The proofs of these identities follow from integral representation.

Taking into account the identities written above we get

1−ε2
∫

ε1

dρCρ[ϕ]
←→
∂2C1−ρ[ψ] =

1−ε2
∫

ε1

dρCρ[ϕ](∂2C1−ρ[ψ])−
1−ε2
∫

ε1

dρ(∂2Cρ[ϕ])C1−ρ[ψ] (A.6)

= −
1−ε2
∫

ε1

dρ

(

Cρ[ϕ]
∂

∂ρ
C1−ρ[ψ] +

∂

∂ρ
Cρ[ϕ]C1−ρ[ψ]

)

= −
1−ε2
∫

ε1

dρ
∂

∂ρ
(Cρ[ϕ]C1−ρ[ψ])

= −C1−ε2[ϕ]Cε2 [ψ] + Cε1[ϕ]C1−ε1 [ψ]

and (A.2), we can take the limit ε1 → +0, ε2 → +0 and get (A.3).

– 14 –



J
H
E
P
0
2
(
2
0
0
9
)
0
4
5

References

[1] A. Sen, Tachyon dynamics in open string theory, Int. J. Mod. Phys. A 20 (2005) 5513

[hep-th/0410103].

[2] A. Sen, Rolling tachyon, JHEP 04 (2002) 048 [hep-th/0203211].

[3] G.W. Gibbons, Cosmological evolution of the rolling tachyon, Phys. Lett. B 537 (2002) 1

[hep-th/0204008]; Thoughts on tachyon cosmology, Class. and Quant. Grav. 20 (2003) S321

[hep-th/0301117].

[4] E. Witten, Noncommutative geometry and string field theory, Nucl. Phys. B 268 (1986) 253.

[5] M. Schnabl, Analytic solution for tachyon condensation in open string field theory, Adv.

Theor. Math. Phys. 10 (2006) 433 [hep-th/0511286].

[6] V.A. Kostelecky and S. Samuel, On a nonperturbative vacuum for the open bosonic string,

Nucl. Phys. B 336 (1990) 263.

[7] N. Moeller, A. Sen and B. Zwiebach, D-branes as tachyon lumps in string field theory, JHEP

08 (2000) 039 [hep-th/0005036].

[8] N. Moeller and B. Zwiebach, Dynamics with infinitely many time derivatives and rolling

tachyons, JHEP 10 (2002) 034 [hep-th/0207107].

[9] H.-t. Yang, Stress tensors in p-adic string theory and truncated OSFT, JHEP 11 (2002) 007

[hep-th/0209197].

[10] M. Fujita and H. Hata, Time dependent solution in cubic string field theory, JHEP 05 (2003)

043 [hep-th/0304163].

[11] M. Fujita and H. Hata, Rolling tachyon solution in vacuum string field theory, Phys. Rev. D

70 (2004) 086010 [hep-th/0403031].

[12] M. Schnabl, Comments on marginal deformations in open string field theory, Phys. Lett. B

654 (2007) 194 [hep-th/0701248].

[13] M. Kiermaier, Y. Okawa, L. Rastelli and B. Zwiebach, Analytic solutions for marginal

deformations in open string field theory, JHEP 01 (2008) 028 [hep-th/0701249].

[14] M. Kaku and K. Kikkawa, The field theory of relativistic strings. Part 1. Trees, Phys. Rev. D

10 (1974) 1110; The field theory of relativistic strings. Part 2. Loops and Pomerons, Phys.

Rev. D 10 (1974) 1823.

[15] S. Hellerman and M. Schnabl, Light-like tachyon condensation in open string field theory,

arXiv:0803.1184.

[16] L. Joukovskaya, Rolling solution for tachyon condensation in open string field theory,

arXiv:0803.3484.

[17] V. Forini, G. Grignani and G. Nardelli, A solution to the 4-tachyon off-shell amplitude in

cubic string field theory, JHEP 04 (2006) 053 [hep-th/0603206].

[18] I.Y. Aref’eva, L.V. Joukovskaya and A.S. Koshelev, Time evolution in superstring field theory

on non-BPS brane. I: rolling tachyon and energy-momentum conservation, JHEP 09 (2003)

012 [hep-th/0301137].

[19] Y. Volovich, Numerical study of nonlinear equations with infinite number of derivatives, J.

Phys. A 36 (2003) 8685 [math-ph/0301028].

– 15 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=IMPAE%2CA20%2C5513
http://arxiv.org/abs/hep-th/0410103
http://jhep.sissa.it/stdsearch?paper=04%282002%29048
http://arxiv.org/abs/hep-th/0203211
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB537%2C1
http://arxiv.org/abs/hep-th/0204008
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C20%2CS321
http://arxiv.org/abs/hep-th/0301117
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB268%2C253
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=00203%2C10%2C433
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=00203%2C10%2C433
http://arxiv.org/abs/hep-th/0511286
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB336%2C263
http://jhep.sissa.it/stdsearch?paper=08%282000%29039
http://jhep.sissa.it/stdsearch?paper=08%282000%29039
http://arxiv.org/abs/hep-th/0005036
http://jhep.sissa.it/stdsearch?paper=10%282002%29034
http://arxiv.org/abs/hep-th/0207107
http://jhep.sissa.it/stdsearch?paper=11%282002%29007
http://arxiv.org/abs/hep-th/0209197
http://jhep.sissa.it/stdsearch?paper=05%282003%29043
http://jhep.sissa.it/stdsearch?paper=05%282003%29043
http://arxiv.org/abs/hep-th/0304163
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD70%2C086010
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD70%2C086010
http://arxiv.org/abs/hep-th/0403031
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB654%2C194
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB654%2C194
http://arxiv.org/abs/hep-th/0701248
http://jhep.sissa.it/stdsearch?paper=01%282008%29028
http://arxiv.org/abs/hep-th/0701249
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD10%2C1110
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD10%2C1110
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD10%2C1823
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD10%2C1823
http://arxiv.org/abs/0803.1184
http://arxiv.org/abs/0803.3484
http://jhep.sissa.it/stdsearch?paper=04%282006%29053
http://arxiv.org/abs/hep-th/0603206
http://jhep.sissa.it/stdsearch?paper=09%282003%29012
http://jhep.sissa.it/stdsearch?paper=09%282003%29012
http://arxiv.org/abs/hep-th/0301137
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JPAGB%2CA36%2C8685
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JPAGB%2CA36%2C8685
http://arxiv.org/abs/math-ph/0301028


J
H
E
P
0
2
(
2
0
0
9
)
0
4
5

[20] L. Joukovskaya and Y. Volovich, Energy flow from open to closed strings in a toy model of

rolling tachyon, math-ph/0308034.

[21] V. Forini, G. Grignani and G. Nardelli, A new rolling tachyon solution of cubic string field

theory, JHEP 03 (2005) 079 [hep-th/0502151].

[22] L.V. Joukovskaya, Iterative method for solving nonlinear integral equations describing rolling

solutions in string theory, Theor. Math. Phys. 146 (2006) 335 [Teor. Mat. Fiz. 146 (2006)

402] [arXiv:0708.0642].

[23] V.S. Vladimirov and Y.I. Volovich, On the nonlinear dynamical equation in the p-adic string

theory, Theor. Math. Phys. 138 (2004) 297 [Teor. Mat. Fiz. 138 (2004) 355]

[math-ph/0306018].

[24] V.S. Vladimirov, Nonlinear equations for p-adic open, closed, and open-closed strings, Theor.

Math. Phys. 149 (2006) 1604 [Teor. Mat. Fiz. 149 (2006) 354] [arXiv:0705.4600].

[25] D.V. Prokhorenko, On some nonlinear integral equation in the (super)string theory,

math-ph/0611068.

[26] N. Barnaby and N. Kamran, Dynamics with infinitely many derivatives: the initial value

problem, JHEP 02 (2008) 008 [arXiv:0709.3968].

[27] I.Y. Aref’eva and L.V. Joukovskaya, Time lumps in nonlocal stringy models and cosmological

applications, JHEP 10 (2005) 087 [hep-th/0504200].

[28] I.Ya Aref’eva, Nonlocal string tachyon as a model for cosmological dark energy, AIP Conf.

Proc. 826 (2006) 301 [astro-ph/0410443].

[29] G. Calcagni, Cosmological tachyon from cubic string field theory, JHEP 05 (2006) 012

[hep-th/0512259].

[30] I.Y. Aref’eva, L.V. Joukovskaya and S.Y. Vernov, Bouncing and accelerating solutions in

nonlocal stringy models, JHEP 07 (2007) 087 [hep-th/0701184].

[31] L. Joukovskaya, Dynamics in nonlocal cosmological models derived from string field theory,

Phys. Rev. D 76 (2007) 105007 [arXiv:0707.1545].

[32] L. Joukovskaya, Rolling tachyon in nonlocal cosmology, AIP Conf. Proc. 957 (2007) 325

[arXiv:0710.0404].

[33] G. Calcagni, M. Montobbio and G. Nardelli, Route to nonlocal cosmology, Phys. Rev. D 76

(2007) 126001 [arXiv:0705.3043].

[34] L. Brekke, P.G.O. Freund, M. Olson and E. Witten, Nonarchimedean string dynamics, Nucl.

Phys. B 302 (1988) 365.

[35] N. Barnaby, T. Biswas and J.M. Cline, p-adic inflation, JHEP 04 (2007) 056

[hep-th/0612230].

[36] J.E. Lidsey, Stretching the inflaton potential with kinetic energy, Phys. Rev. D 76 (2007)

043511 [hep-th/0703007].

[37] I.Y. Aref’eva, L.V. Joukovskaya and S.Y. Vernov, Dynamics in nonlocal linear models in the

Friedmann-Robertson-Walker metric, J. Phys. A 41 (2008) 304003 [arXiv:0711.1364].

[38] A. Sen, Descent relations among bosonic D-branes, Int. J. Mod. Phys. A 14 (1999) 4061

[hep-th/9902105].

– 16 –

http://arxiv.org/abs/math-ph/0308034
http://jhep.sissa.it/stdsearch?paper=03%282005%29079
http://arxiv.org/abs/hep-th/0502151
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=TMPHA%2C146%2C335
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=TMFZA%2C146%2C402
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=TMFZA%2C146%2C402
http://arxiv.org/abs/0708.0642
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=TMPHA%2C138%2C297
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=TMFZA%2C138%2C355
http://arxiv.org/abs/math-ph/0306018
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=TMPHA%2C149%2C1604
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=TMPHA%2C149%2C1604
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=TMFZA%2C149%2C354
http://arxiv.org/abs/0705.4600
http://arxiv.org/abs/math-ph/0611068
http://jhep.sissa.it/stdsearch?paper=02%282008%29008
http://arxiv.org/abs/0709.3968
http://jhep.sissa.it/stdsearch?paper=10%282005%29087
http://arxiv.org/abs/hep-th/0504200
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=APCPC%2C826%2C301
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=APCPC%2C826%2C301
http://arxiv.org/abs/astro-ph/0410443
http://jhep.sissa.it/stdsearch?paper=05%282006%29012
http://arxiv.org/abs/hep-th/0512259
http://jhep.sissa.it/stdsearch?paper=07%282007%29087
http://arxiv.org/abs/hep-th/0701184
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD76%2C105007
http://arxiv.org/abs/0707.1545
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=APCPC%2C957%2C325
http://arxiv.org/abs/0710.0404
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD76%2C126001
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD76%2C126001
http://arxiv.org/abs/0705.3043
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB302%2C365
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB302%2C365
http://jhep.sissa.it/stdsearch?paper=04%282007%29056
http://arxiv.org/abs/hep-th/0612230
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD76%2C043511
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD76%2C043511
http://arxiv.org/abs/hep-th/0703007
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JPAGB%2CA41%2C304003
http://arxiv.org/abs/0711.1364
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=IMPAE%2CA14%2C4061
http://arxiv.org/abs/hep-th/9902105


J
H
E
P
0
2
(
2
0
0
9
)
0
4
5

[39] J. Khoury, B.A. Ovrut, P.J. Steinhardt and N. Turok, The ekpyrotic universe: colliding

branes and the origin of the hot Big Bang, Phys. Rev. D 64 (2001) 123522 [hep-th/0103239].

[40] P.J. Steinhardt and N. Turok, A cyclic model of the universe, Science 296 (2002) 1436.

[41] B. Fornberg, Practical guide to pseudospectral methods, Cambridge University Press,

Cambridge U.K. (1996).

[42] N. Moeller, A tachyon lump in closed string field theory, JHEP 09 (2008) 056

[arXiv:0804.0697].

[43] D.J. Mulryne and N.J. Nunes, Diffusing non-local inflation: solving the field equations as an

initial value problem, arXiv:0805.0449.

– 17 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD64%2C123522
http://arxiv.org/abs/hep-th/0103239
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=SCIEA%2C296%2C1436
http://jhep.sissa.it/stdsearch?paper=09%282008%29056
http://arxiv.org/abs/0804.0697
http://arxiv.org/abs/0805.0449

